APSC 1001 & CS 1010

Deep dive into Raspberry Pi with Python

Prof. Kartik Bulusu, MAE Dept. Detecting Heart Beats

Teaching Assistants: Sara Tenaglio, BME Dept. Catherine Karpova, BME Dept. Zachary Stecher, CEE Dept.

Learning Assistants: Jonathan Terry, CS Dept. Ethan Frink, MAE Dept. Jack Umina, CS Dept. Olivia Legault, CS Dept. Alexis Renderos, MAE Dept.

GW Fall 2021 School of Engineering & Applied Science

Photo: Kartik Bulusu

Photo: Kartik Bulusu

Photoplethysmogram or Pulse sensor – Explained

Sources:

https://pulsesensor.com/ https://www.electroschematics.com/heart-rate-sensor/ https://www.rohm.com/electronics-basics/sensor/pulse-sensor https://www.rohm.com/sensor-shield-support/heart-rate-sensor

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Prof. Kartik	Bulusu, MAE Dept.	Fall 2021
APSC 1001 CS 1010	Introduction to Engineering for U Computer Science Orientation	Indeclared Majors

Frequency is the number of occurrences of a repeating event per unit **time**.

f = 0.5 Hz T = 2.0 s

f = 1.0 Hz T = 1.0 s

f = 2.0 Hz T = 0.5 s

Wikimedia Commons

The **sampling frequency** or **sampling rate**, f_s , is the average number of samples obtained in one second (*samples per second*), thus $f_s = 1/T$.

The general range of hearing for young people is 20 Hz to 20000 Hz.

Audio CD, most commonly used with MPEG-1 audio is sampled at 44100 Hz

HD DVD (High-Definition DVD) audio tracks are sampled at $98000\ \text{Hz}$

The approximately double-rate requirement is a consequence of the Nyquist theorem.

School of Engineering & Applied Science

Prof. Karti	k Bulusu, MAE Dept.	Fall 2021
APSC 1001	Introduction to Engineering for	Undeclared Majors
CS 1010	Computer Science Orientation	

Introducing the PCF8591 8-bit A/D and D/A converter

Potentiometer – to adjust the quality of the analog input signal by changing the "gain".

SYMBOL	PIN	DESCRIPTION	
AINO	1	analog inputs (A/D converter)	
AIN1	2		
AIN2	3		
AIN3	4		
A0	5	hardware address	
A1	6		
A2	7		
V _{SS}	8	negative supply voltage	
SDA	9	I ² C-bus data input/output	
SCL	10	I ² C-bus clock input	
OSC	11	oscillator input/output	
EXT	12	external/internal switch for oscillator input	
AGND	13	analog ground	
V _{REF}	14	voltage reference input	
AOUT	15	analog output (D/A converter)	
V _{DD}	16	positive supply voltage	

I²C (Inter-Integrated Circuit, <u>eye-</u> <u>squared-C</u>), alternatively known as I2C or IIC, is a <u>synchronous</u>, <u>multi-</u> <u>master</u>, <u>multi-slave</u>, <u>packet</u> <u>switched</u>, <u>single-ended</u>, <u>serial</u> <u>communication bus</u> invented in 1982 by <u>Philips Semiconductors</u>.

It is widely used for attaching lowerspeed peripheral <u>ICs</u> to processors and <u>microcontrollers</u> in short-distance, intra-board communication.

Sources:

https://en.wikipedia.org/wiki/I%C2%B2C

http://wiki.sunfounder.cc/index.php?title=PCF8591_8-bit_A/D_and_D/A_converter_Module

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Prof. Kartik Bulusu, MAE Dept. Fall 2021

APSC 1001 Introduction to Engineering for Undeclared Majors CS 1010 Computer Science Orientation

Sources:

https://how2electronics.com/pulse-rate-bpm-monitor-arduino-pulse-sensor/

https://medium.com/@sarala.saraswati/connecting-to-your-raspberry-pi-console-via-the-serial-cable-44d7df95f03e http://wiki.sunfounder.cc/index.php?title=PCF8591 8-bit A/D and D/A converter Module

CS 1010

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Prof. Kartik Bulusu, MAE Dept.Fall 2021APSC 1001Introduction to Engineering for Undeclared Majors

Computer Science Orientation

Goal of the lab segment

Co-work

• Observe, ask and try in groups

Make

- Build-a-hack
- Pulse sensors, A/D converter and Raspberry Pi 3B+

Analyze data using Python

Record

Challenges, Opportunities, Gaps and Surprises

Sources:

https://www.spectrumhealthlakeland.org/lakeland-ear-nose-and-throat/ent-health-library/Content/3/90852/ https://protosupplies.com/product/pulsesensor-heart-rate-sensor-module/

School of Engineering & Applied Science

Prof. Kartik Bulusu, MAE Dept. Fall 2021

APSC 1001 Introduction to Engineering for Undeclared Majors CS 1010 Computer Science Orientation

<figure>

Pulse signal with high gain setting

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Pulse signal peaks detected by the Raspberry Pi 3B+ system

Pulse signal with low gain setting

GW

Signals generated by the heart rate measurements system after adjusting the potentiometer settings

Typical pulse signal with optimal gain setting

Prof. Karti	ik Bulusu, MAE Dept.	Fall 2021
APSC 1001	Introduction to Engineering for U	Indeclared Majors
CS 1010	Computer Science Orientation	