

School of Engineering & Applied Science

BE A PART OF IT

THE GEORGE WASHINGTON UNIVERSITY

Computer Science at GW

Prof Bhagi Narahari

what do Computer Scientists do....

What is Computer Science

- Use Computational thinking (& tools) to solve problems in
 - Engineering, Medicine, Science, Law,
 - Arts, Entertainment, Business, Finance...
 - Pretty much everything....
- Computational techniques as third pillar in today's scientific methods
 - Experiments, Theory, Simulation/Computing
- You've been learning about computational thinking via your lab experiments & Python

MythBusters

- CS is just Programming...?
- Software developers sit at their cubicle and talk to their computer all day ?
- The field of CS has no impact on society ?
 - i.e., there is no such thing as Computer Science for Social Good ?

Reality:

* Programming is just one of many tools to solve a problem

- If CS is about programming then Astronomy must be about telescopes ?!
- Computer Science is all about problem solving and then getting the computer to implement your solution!
- * Every software engineer has to work in teams and learn how to communicate their ideas...more so if they are tackling a "real" problem
 - * As early as sophomore year, courses require teamwork
- * CS is driving social change in today's world
 - * Our faculty (CS@GW) leading the way in 'Computing for Social Good'

Solving Problems & Computational Thinking – What is involved?

- Problem solving using computers...process:
 - Design a solution model the problem & develop the algorithm
 - Design software to implement the solution
 - Programming
- How do we measure how "good" the solution is ?
 - Think like an engineer !
 - All about efficiency minimize steps needed to complete the task
 - Time to solve the problem, Cost, Ease of deployment,...

Question....your first "algorithm"

- I thought of a number between 1 and 32 guess what it is by asking me a question
- Smaller the number of guesses the better your solution
 - You can ONLY ask a question of the form:
 - "is it more than X" or "is it less than or equal to X" or "is it equal to X"
- Count the number of questions: what is the maximum number of questions you need to ask to determine the number ?
 - Think of a strategy that minimizes the number of questions
 - Can you generalize your answer/strategy to guess a number between 1 and N ?
- Why is the number of steps/guesses important ?
 - Measures the amount of work i.e., steps needed to solve the problem = time taken by the program

An "efficient" solution

- Is the number less than or equal to another number X
 - Start: is it less than or equal to 16
 - If answer is yes, then next question is "is it < = 8"
 - At each step you halve the range of numbers you are searching
- Worst case (maximum number of steps)
 - 1. " <= 16 ?"
 - 2. "<= 8?"
 - 3. "<= 4 ?"
 - 4. "< = 2 ?"
 - 5. "< = 1 ?"

So how "good" was your solution-Binary Search: let's do some math!

- For N numbers
- How many numbers are you "searching" at each step:
 - first N, then N/2 and then N/4,... and finally $1 = N/2^{K}$
 - Solving for K....
- Number of steps: K = log₂ N
 - If N=100, then (log N)= 7 steps
 - If N=1,000,000 then (log N)= 20
- What N are we talking about.....
 - Facebook: scans over 100 terabytes per day! And over 100 petebytes (2^50) !!!
- Next step: Programming the solution!

Why is efficient search important? How did this change our lives ?

CS Program @ GW

- Degrees are BS or BA
 - * BA requires double majors or multiple minors
 - # BS offers flexible specialization in CS
- * option to specialize in a technical area after core competence
 - * Cyber Security specialization, Data science,
- # Flexibility to take a lot of non-CS courses
 - # business, economics, criminal justice, Int. Affairs
 - * Programs with Business school, Corcoran, Public health,..
 - # Easy/flexible path to pursue double majors (lot of CS students do double majors or minors)
 - Some cool project based "student led courses" interview prep, Rasp Pi dev?
- Research with faculty
- Lots of internships
- Study-abroad-semester built into curriculum

CS Curriculum - First two years

- Year 1: baby steps
 - Intro problem solving using computers: programming, data structures, algorithms
 - Math & Science, includes Discrete math for CS (Analog vs Digital world)
- Year 2: foundational stuff
 - Software engineering & Database systems: building & using S/W
 - Computer Architecture & Systems Programming (hardware & systems)
 - More Math for CS
- You will know enough CS after Year 2 to go into technical depth
 - Sophomores have interned at FAAMG

(Facebook, Amazon, Apple, Microsoft, Google).....

- Sophomores have done research (published papers)
- Comment: CS@GW curriculum is a bit front loaded we teach you all the foundations by semester 5

CS Curriculum - Years 3,4

- 5th Semester: Fun begins!...
 - Algorithms all about problem solving
 - Operating Systems all you want to know about how systems are built
 - After this semester, you are on your way!
- 6th semester: ALL electives...time to PARTY ??
 - Study abroad..and take whatever you want
 - Start technical electives (specialization?) or second major/minor or research
- Senior Year:
 - Year long capstone: design and build your project...entrepreneurship, presentation skills, etc.
 - All your CS courses are electives focus on what you are interested in!

What are Technical Electives/Tracks..

- Areas synergistic with faculty research
- Graphics and Animation
- Data Science/Analytics natural language processing
- Artificial intelligence, Machine Learning
- Software engineering and systems
- Computer Security.....

Life after CS@GW

* There are TONS of jobs in CS

Startups, Fortune500, Defence, Labs, Govt.....

* Where do our graduates go:

Industry: Disney, Apple, Cisco, Google, Microsoft, Twitter, Buzzfeed, Facebook

Startups...

- ***** Govt: NASA, Naval Res.Labs, NIH,...
- * Defense: Lockheed-Martin, Raytheon, ...
- # Grad schools: Stanford, Penn, Cornell, MIT, Berkeley, CMU, Columbia, Princeton, Georgia Tech, UT-Austin,GW (5year BS+MS or BA+MS)

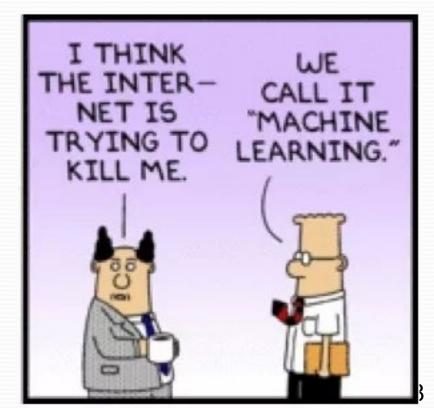
What are some of the topics and areas that we teach and/or research at CS@GW

- Our theme: CS and Social Impact
- AI for good
- Privacy & Secure elections
- Making mobile devices safer
- Medical computing robotic surgery
- Institute for Data, Democracy & Privacy

Many undergraduates work/research with our faculty

Big Data/Data-Science anyone?

Machine Learning & Artificial Intelligence


Dr Arora

Dr Kinga

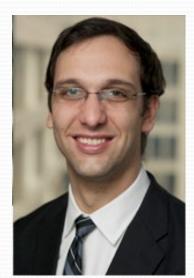
Robert Pless, Chair

Natural Language Processing: Why is it hard

- Can Siri understand any question you ask ?
- What does this sentence mean:
- "I made her duck"

AI for Social Good

Bias in AI: Uncover and quantify human-like biases in machines


- Discrimination by ride companies (Uber&Lyft), Autonomous cars, Bail approval software, Google Translate
- Social networks disinformation analysis and prediction
- Recent result: Uber & Lift charged more if pickup/destination had a higher percentage of (a) non-white residents, or (b) low-income residents or (c) education
 - Has led to a law-suit against Uber

Computer vision: Prof Pless lab


- Social computing from visual perspective
- Social media analytics Eating disorders
- Creating Image analysis tools to fight sex trafficking
 - FBI and DOJ

Software Systems: Cloud Computing & Operating Systems

- Efficient management of the system resources
 - Produce results in timely manner real-time computing
 - Manage cloud computing resources failure, speed, etc.
- Analogy: Systems SW is like working on the car engine
- Prof Gabe Parmer
 Prof. Tim Wood
 - Lots & lots of undergraduates (10-20) work in the Systems Lab

IoT (Internet of Things) & Embedded Systems

Rasp.Pi = IoT platform ? Cool 1 credit projects course on Rasp.Pi IoT Apps

Simha

Parmer

Choi

Graphics & Animation

LIFE OF PI

Prof James Hahn Virtual Reality & Medicine

CyberSecurity @ GW

- Usable Security & Privacy Human factors in design of secure systems including mobile phones: Profs Aviv, Acar
- Cryptography for Big data, Privacy, and fighting fake news

 Prof Arkady Yerkumovich
- Secure voting and Privacy Vora

All of these research groups have undergraduates

New York Times NPR Morning Edition WAMU News (local NPR affiliate) **Protecting our Democracy:** Wired

Computer World

IEEE Spectrum SIAM News **CNet** News C-Span msnbc.com Voice of America

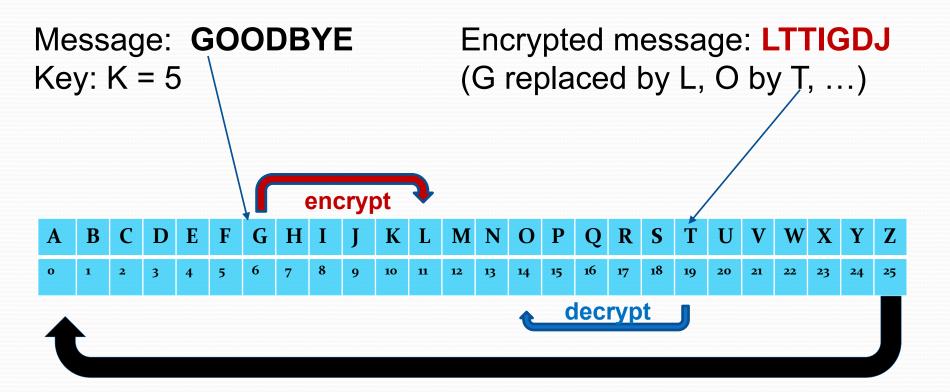
Secure & Verifiable Voting

- Statistical election audits: 2020: GA? PA?
- Cryptographic voter-verifiable voting systems
 - Used by City of Takoma Park for city elections
 - 2009, 2011
- Undergraduates play a key role in all sponsored research

Questions ?

Today's Exercise: security and privacy and building an encryption module!

- First understand the problem and design a solution
- Do you care about privacy ?
- Next implement an "application" in Python
 - Application: You want your photograph(s) to be seen only by authorized people


Security& Privacy Exercise: Encryption

- Encryption coding your message
 - Sending secrets
 - Safeguard your private information!
- Caeser's Cipher a simple 'substitution cipher' algorithm
 - History: used by Julius Caeser to send military secrets
- Original Form: Shift each alphabet by 3
 - A replaced by D, B replaced by E,....Y replaced by B
 - Circular shift
 - "FRIDAY" encrypted as " IULGDB "

Generalized Shift(Caeser) Cipher.

- Instead of shifting by 3, shift by some secret value K
 - K is between 0 and 25
 - Why ? Because there are 26 letters in the alphabet
- The value K is your secret "Key" (like a password)
- Encryption "algorithm" : Shift each letter (right) by K
- To "decrypt" the message: Shift 'left' each letter by K
- Some math: we can assign a number from 0 to 25 to each letter in the alphabet starting with A
 - Shifting by K means adding K to that number
 - But circular addition...more in a bit

Example:

To decrypt the encrypted message, move letter left 5 places

So what's the "math" behind this..

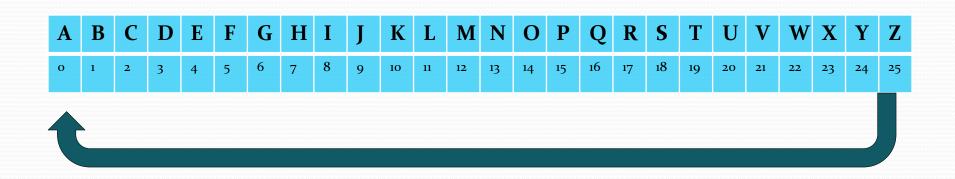
- Algorithms need to be shown to be "correct"....
- This is where the math comes in !

Some Math...the CS "discrete" math: Circular Addition uses <u>Modulo arithmetic</u>: (X+K) mod N = remainder of (A+K) divided by N

Ex: (6+5) mod 26 =11 *(letter L)*, (24+5) mod 26 = 29 mod 26 = 3 *(which is letter D)*

To decrypt: $(X - K) \mod N$ If (X-K) is negative it adds N to get result. $(3 - 5) \mod 26 = -2+26 = 24 =$ letter Y

Modulo arithmetic in Python


- Circular addition
 - Circular addition.....known as Modulo
 - A Mod N = remainder of A divided by N
- Good news: Python provides the Modulo operation

• B = a % N

- To encrypt value a with key K: B = (a+K)% N
 - For alphabet N=26 (we have 26 different values)

Question:

Can you "decode" the day of the week: OQPFCA?

Weak encryption vs Strong encryption

- Strength of encryption = How easy is it to decipher your secret (i.e., encryption)
- In Caeser's cipher we use the same key for each character in our message
 - Shift each alphabet by 5
- Another method: version of One-Time-Pad (OTP)
- Encrypt each position in message with a separate key
 - Message = BYE
 - Shift B by 3, shift Y by 7, shift E by 5 to get EFJ

An application using Encryption & implementation in Python today....

- You want to send a picture to a friend
 - Or better yet, post it on a website
- To restrict who can see it, you want to encrypt it and only those with the correct key will be able to see the picture
- Steps:
 - 1. Take your photo
 - 2. Import into your Python code and enter a secret Key
 - 3. Write (and run) python code to encrypt the selfie
 - Implement the encryption algorithm we discussed
 - Decrypt with the key a wrong key will lead to a jumbled image
 - Checking your encryption: Look at the encrypted image and see how similar it looks to the original image
 - The less similar it looks the "stronger" (& better) the encryption!

Getting Started...some preliminaries

- An image (i.e., your selfie) is a matrix of pixels
- To simplify our algorithm (for purpose of demonstration!) we convert your image to a grayscale image
- input image is a N by M matrix A[i,j] of pixels and key=K
 - Each pixel A[i,j] has a greyscale value between 0 and 255
 - i.e., 256 different values analogy with 26 letters in alphabet
- To encrypt image, for each pixel add K to A[i,j] to get B[i,j]
 - Important: Circular addition with 256 different values
 - Python operator: %
 - B[i,j] = (A[i,j] + K) % 256

A better encryption "system"

- We saw how the one-time pad (OTP) is a better technique
- Applying the concept to this system: each pixel A[i,j] has its own key K[i,j]
 - And then algorithm is B[i,j] = (A[i,j] + K[i,j]) % 256
- Here is a cool trick: instead of entering gazilion values of K[i,j], how about using a 'secret' image as your key ?!!
 - Key image K, represented as a matrix K[i,j]
- Change to algorithm:
 - import the key image as K[i,j] convert to greyscale
 - B[i,j] = (A[i,j] + K[i,j]) % 256

Lessons Learned.....and CS?

- Experience the process of going from problem to solution to "software system"
 - Your data came from different source (i.e, camera but could be a sensor in a system camera in a car, satellite images, ...?)
- Theoretical (math) basis for the solution ensures we design a correct solution
- To make this into a product, you need to implement a nice user interface or an app!
- CS is all about problem solving and then translating to implementation on a computer system
 - Lot of work in CS@GW that focuses on "CS with Social Impact"